metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Holger Braunschweig* and Thomas Kupfer

Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

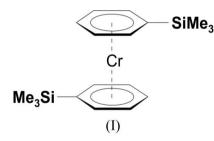
Correspondence e-mail: h.braunschweig@mail.uni-wuerzburg.de

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.003 Å R factor = 0.024 wR factor = 0.067 Data-to-parameter ratio = 18.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography


All rights reserved

Bis(η^6 -trimethylsilylbenzene)chromium(0)

The molecule of the title compound, $[Cr(C_6H_5SiMe_3)_2]$, has approximate C_{2h} symmetry. The two aromatic ring systems are arranged almost ideally parallel to each other; the angle between the least-squares planes of the six-membereed rings is 0.75 (12)°. The two Me₃Si substituents exhibit an *anti* arrangement, with a pseudo-torsion angle of 178.4 (2)°.

Comment

The title compound, (I), was originally prepared by Elschenbroich and co-workers in the 1970s by a salt elimination of dilithiated bis(benzene)chromium with Me₃SiCl (Elschenbroich *et al.*, 1970). In the course of our recent studies on substituted sandwich complexes (Braunschweig *et al.*, 2000, 2003, 2004, 2005, 2006), we became interested in (I) as a suitable precursor for the preparation of boron-containing metallocenes. For instance, related silyl-substituted benzene derivatives have been shown to react with bromoboranes with Me₃SiBr elimination to yield arylboranes (Haubold *et al.*, 1986; Kaufmann *et al.*, 1987).

The molecule of compound (I) has approximate C_{2h} symmetry. The Cr--C distances are comparable with those found in the unsubstituted bis(benzene)chromium (Keulen & Jellinek *et al.*, 1966). Both rings are planar and can be described as primarily η^6 -coordinated. As expected, the two rings exhibit a parallel arrangement, with an angle of 0.75 (12)° between the planes of the six-membered rings. In addition, the angle δ (179.6°), defined by the ring centroids and the metal center, is essentially the same as in the parent compound. The geometry around the silyl groups and their expected *anti* arrangement [pseudo-torsion angle Si1-C11...C21...Si2 = 178.4 (2)°] is in agreement with the analogous ferrocene derivative (Foucher *et al.*, 1995).

Experimental

The title compound was prepared by a modified literature procedure (Elschenbroich *et al.*, 1970). A suspension of $[Cr(C_6H_5Li)_2]$.tmeda (0.51 g, 1.52 mmol; tmeda = N,N,N',N'-tetramethylethylenediamine) in hexanes (10 ml) was treated dropwise at 243 K with a solution of

Received 16 November 2006 Accepted 17 November 2006

m3502 Braunschweig and Kupfer • [Cr(C₉H₁₄Si)₂] doi:10.1107/S1600536806049154 Acta Cryst. (2006). E62, m3502–m3503

 Me_3SiCl (0.41 g, 3.79 mmol) in hexanes (3 ml). The reaction was allowed to reach ambient temperature and was stirred for a further 48 h. All volatiles were removed under reduced pressure and the resulting solid was extracted with pentane (5 ml). Storage at 243 K yielded orange–brown crystals of (I) (0.38 g, 1.08 mmol, 71%).

Crystal data

 $\begin{bmatrix} Cr(C_9H_{14}Si)_2 \end{bmatrix} \\ M_r = 352.58 \\ Orthorhombic, P2_12_12_1 \\ a = 6.4586 (2) \text{ Å} \\ b = 16.7064 (6) \text{ Å} \\ c = 17.0965 (6) \text{ Å} \\ V = 1844.71 (11) \text{ Å}^3 \end{bmatrix}$

Data collection

Bruker APEX2 area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.836, T_{\max} = 0.975$

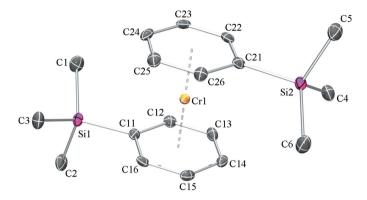
Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.067$ S = 1.083490 reflections 190 parameters H-atom parameters constrained Z = 4 D_x = 1.270 Mg m⁻³ Mo K α radiation μ = 0.74 mm⁻¹ T = 100 (2) K Needle, orange 0.25 × 0.09 × 0.04 mm

8279 measured reflections 3490 independent reflections 3230 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$ $\theta_{\text{max}} = 26.0^{\circ}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0304P)^{2} + 0.1864P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1446 Friedel pairs Flack parameter: 0.003 (17)

Table 1


Selected bond lengths (Å).

Cr1-C11	2.1766 (19)	Cr1-C23	2.1441 (20)
Cr1-C12	2.1432 (20)	Cr1-C24	2.1484 (21)
Cr1-C13	2.1500 (22)	Cr1-C25	2.1400 (22)
Cr1-C14	2.1517 (21)	Cr1-C26	2.1405 (21)
Cr1-C15	2.1442 (22)	$Cr1-X_1$	1.673
Cr1-C16	2.1449 (21)	$Cr1-X_2$	1.664
Cr1-C21	2.1578 (19)	C11-Si1	1.8743 (20)
Cr1-C22	2.1378 (21)	C21-Si2	1.8728 (21)
	· · ·		

Notes: (a) X_1 = centroid of the six-membered ring C11–C16; (b) X_2 = centroid of the sixmembered ring C21–C26.

H atoms were placed at idealized positions and treated as riding atoms, with C-H = 0.98 (CH₃) and 0.95 Å (aromatic CH), U_{iso} (H) = 1.5 U_{eq} (primary C) or U_{iso} (H) = 1.2 U_{eq} (aromatic C).

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.

refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXL97*.

This work was supported by the DFG, EPSRC and the Fonds der Chemischen Industrie. TK thanks the Fonds der Chemischen Industrie for a stipend.

References

- Braunschweig, H., Bartole-Scott, A., Kupfer, T., Lutz, M., Manners, I., Nguyen, T. I., Radacki, K. & Seeler, F. (2006). *Chem. Eur. J.* 12, 1266–1273. Braunschweig, H., Breitling, F. M., Gullo, E. & Kraft, M. (2003). *J. Organomet.*
- Chem. 380, 31-42.
- Braunschweig, H., Dirk, R., Englert, U., Berenbaum, A., Green, J. C., Lough, A. J. & Manners, I. (2000). J. Am. Chem. Soc. **122**, 5765–5774.
- Braunschweig, H., Homberger, M., Hu, C., Zheng, X., Gullo, E., Clentsmith, G. K. B. & Lutz, M. (2004). Organometallics, 23, 1968–1970.
- Braunschweig, H., Lutz, M. & Radacki, K. (2005). Angew. Chem. 117, 5792– 5796 Angew. Chem. Int. Ed. 44, 5647-5651.
- Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2 (Version 1.0-27) and SAINT (Version 7.12A). Bruker
- AXS Inc., Madison, Wisconsin, USA.
- Elschenbroich, C. (1970). J. Organomet. Chem. 22, 677-683.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Foucher, D. A., Honeyman, C. H., Lough, A. J., Manners, I. & Nelson, J. M. (1995). Acta Cryst. C51, 1795–1799.

- Haubold, W., Herdtle, J., Gollinger, W. & Einholz, W. (1986). J. Organomet. Chem. 315, 1–8.
- Kaufmann, D. (1987). Chem. Ber. 120, 901-905.
- Keulen, E. & Jellinek, F. (1966). J. Organomet. Chem. 5, 490-492.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.